近年來,自動識別方法在服務領域、貨物銷售、后勤分配、商業、生產企業和材料流通等領域得到了快速的發展,而其中的射頻識別技術更是發展迅速,已逐步成為一個獨立的跨學科的專業領域,主要包括高頻技術、半導體技術、電磁兼容技術、數據安全保密技術、電信和制造技術等。天線作為射頻識別系統設計的關鍵器件直接影響著系統的性能。
1射頻識別系統的原理
射頻識別系統(RFID)一般由閱讀器(PCD)和應答器(PICC)兩部分組成。一臺典型的閱讀器包含有高頻模塊(發送器和接收器)、控制單元以及與應答器連接的耦合元件[1]。應答器是射頻識別系統真正的數據載體。通常,應答器由耦合元件以及微電子芯片組成。應答器沒有自己獨立的供電電源,只是在閱讀器的響應范圍之內,接收來自閱讀器的射頻電源。應答器工作所需的能量,如同時鐘脈沖和數據一樣,是通過耦合單元非接觸傳輸而獲得的[2],因此,實現耦合的元件——天線,在本系統中具有關鍵作用。天線的設計直接關系到系統的通信距離和數據傳輸的可靠性。下面主要以射頻基站芯片U2270B為例,討論射頻識別系統的天線設計。
在RFID系統中有兩個LC電路:由基站線圈和連接電容組成的LRCR電路以及由應答器線圈和連接電容組成的LTCT電路。在單線圈系統中,要求兩個LC電路調諧在相同的諧振頻率上。如果基站和應答器的諧振頻率不匹配,零調制就會產生,從而降低系統的性能。在系統設計成型后,天線的電感是固定的,因此要改變LC電路的諧振頻率,只有調節回路中的電容量。閱讀器基站天線是由電感、電容和電阻組成的串聯諧振電路,如圖1所示。其特性用諧振頻率fo和Q因子表示[3]。fo是RFID系統的工作頻率,由天線的電感和電容共同決定,可以由式(1)來計算:
一般設計采用閱讀器工作在單一頻率的模式,對U2270B而言,可以取,fo=125 kHz。Q因子(QR)與天線的帶寬B和諧振頻率fo的關系為B=fo/QR。高QR值會得到較高的閱讀器天線電壓,從而可增加傳輸到應答器的能量。